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For a Coulomb system contained in a domain L, the dielectric susceptibility
tensor qL is defined as relating the average polarization in the system to a con-
stant applied electric field, in the linear limit. According to the phenomenologi-
cal laws of macroscopic electrostatics, qL depends on the specific shape of the
domain L. In this paper we derive, using the methods of equilibrium statistical
mechanics in both canonical and grand-canonical ensembles, the shape depen-
dence of qL and the corresponding finite-size corrections to the thermodynamic
limit, for a class of general n-dimensional (n \ 2) Coulomb systems, of ellipsoi-
dal shape, being in the conducting state. The microscopic derivation is based on
a general principle: the total force acting on a system in thermal equilibrium is
zero. The results are checked in the Debye–Hückel limit. The paper is a general-
ization of a previous one [L. Šamaj, J. Stat. Phys. 100:949 (2000)], dealing with
the special case of a one-component plasma in two dimensions. In that case, the
validity of the presented formalism has already been verified at the exactly
solvable (dimensionless) coupling C=2.

KEY WORDS: Coulomb systems; dielectric susceptibility; macroscopic electro-
statics; shape-dependent thermodynamics; Debye–Hückel theory.

1. INTRODUCTION

For systems with short-ranged pair interactions among constituents defined
in a specifically shaped domain L, the thermodynamic limit of an intensive
quantity does not depend in general on the shape of the domain L and on
the conditions at the boundary “L given by the surrounding medium. This



is no longer true in the case of macroscopic systems with long-ranged pair
interactions. A typical example is the domain-shape dependence of the
dielectric susceptibility tensor for conductors predicted by the phenome-
nological laws of electrostatics. (1) The aim of this paper is to derive rigor-
ously and precisely, using the methods of equilibrium statistical mechanics
in both canonical and grand-canonical ensembles, the shape dependence of
the dielectric susceptibility and the corresponding finite-size corrections to
the thermodynamic limit, for a class of general classical n-dimensional
microscopic Coulomb systems being in the conducting state. The case n=1
has special features and will not be discussed here. The paper is a general-
ization of the previous one, (2) referred to as I, which was devoted to the
microscopic derivation of the dielectric susceptibility for the special case of
a one-component plasma in two dimensions (2D).

In dimension n, the Coulomb potential v at a spatial position r=
(r1, r2,..., rn), induced by a unit charge at the origin 0, is the solution of the
Poisson equation

Dv(r)=−snd(r) (1.1)

where sn=2pn/2/C(n/2) is the surface area of the n-dimensional unit
sphere. Explicitly,

v(r)=˛−ln(r/r0) if n=2,

r2 − n

n − 2
otherwise

(1.2)

Here, r=|r| and r0 is an arbitrary length scale. The corresponding force
F(r)=−Nv(r) reads

F(r)=
r
rn

(1.3)

In a n-dimensional space, the definition of the Coulomb potential (1.1)
implies in the Fourier space the characteristic small-k behavior v̂(k) 3

1/k2. This maintains many generic properties (like screening) of ‘‘real’’ 3D
Coulomb systems.

We consider general Coulomb systems consisting of M mobile species
a=1,..., M with the corresponding charges qa, embedded in a fixed
uniform background of charge density rb. The most studied models are the
one-component plasma (OCP) and the symmetric two-component plasma
(TCP). The OCP corresponds to M=1 with q1=q and rb of opposite sign;
it may be convenient to define a ‘‘background density’’ nb by rb=−qnb.
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The symmetric TCP corresponds to M=2 with q1=q, q2=−q, and rb=0.
The system is contained in a domain L of specified shape with a smooth
boundary “L. The surrounding medium is for simplicity a vacuum produc-
ing no image forces. The fixed background produces the one-particle
potential rbfb(r) where

fb(r)=F
L

dnrŒ v(|r − rŒ|) (1.4)

The corresponding electric field is rbEb(r) where

Eb(r)=−Nfb(r)=F
L

dnrŒ
r − rŒ

|r − rŒ|n
(1.5)

The energy of a configuration {ri, qai
} of the charged particles plus the

background is

E=C
i < j

qai
qaj

v(|ri − rj |)+rb C
i

qai
fb(ri)+Eb − b (1.6)

Since the backgroud-background interaction energy term Eb − b does not
depend on the particle coordinates, its particular value is irrelevant in the
calculation of particle distribution functions. In the case of point particles,
for many-component systems with at least two oppositely charged species,
the singularity of v(r) (1.2) at the origin prevents the thermodynamic sta-
bility against the collapse of positive-negative pairs of charges: in two
dimensions for small enough temperatures, in three and higher dimensions
for any temperature. However, in those cases, one can introduce short-
range repulsive interactions which prevent the collapse. The derivations
which follow allow for such interactions.

The Coulomb system in the domain L at inverse temperature b will be
considered in both canonical (fixed particle numbers) and grand canonical
(fixed species chemical potentials) ensembles. The thermal average will be
denoted by O · · ·P. In terms of the microscopic density of particles of
species a, n̂a(r)=; i da, ai

d(r − ri), the microscopic densities of the total
particle number and charge are defined respectively by

n̂(r)=C
a

n̂a(r), r̂(r)=C
a

qa n̂a(r) (1.7)

At one-particle level, the total particle number and charge densities are
given respectively by

n(r)=On̂(r)P, r(r)=Or̂(r)P (1.8)
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At two-particle level, one introduces the two-body densities

n (2)
aaŒ(r, rŒ)=7 C

i ] j
da, ai

daŒ, aj
d(r − ri) d(rŒ − rj)8

=On̂a(r) n̂aŒ(rŒ)P−On̂a(r)P da, aŒd(r − rŒ) (1.9)

The corresponding Ursell functions are defined by

UaaŒ(r, rŒ)=n(2)
aaŒ(r, rŒ) − na(r) naŒ(rŒ) (1.10)

and the truncated charge-charge structure function by

S(r, rŒ)=Or̂(r) r̂(rŒ)PT

— Or̂(r) r̂(rŒ)P−Or̂(r)POr̂(rŒ)P (1.11)

The small-k behavior of the Fourier transform of the Coulomb poten-
tial gives rise to exact moment constraints for the charge structure function
S (see review ref. 3). In the bulk, limL Q Rn SL(r, rŒ)=S(|r − rŒ|) obeys the
Stillinger–Lovett screening rules (4, 5) which imply the zeroth-moment (elec-
troneutrality) condition

F dnr S(r)=0 (1.12)

and the second-moment condition

b F dnr |r|2 S(r)= −
2n

sn

(1.13)

For finite systems, the analog of the zeroth-moment sum rule

F
L

dnr S(r, rŒ)=F
L

dnrŒ S(r, rŒ)=0 (1.14)

holds only in the canonical ensemble where it reflects the trivial fact that
the total charge in the domain L is fixed. In the grand canonical ensemble,
the system is expected to exhibit charge fluctuations, (6) in which case (1.14)
does not hold. The information analogous to the bulk second-moment
condition (1.13) is contained in the dielectric susceptibility tensor qL. Let us
use the notation

P̂ i=F
L

dnr r ir̂(r) i=1,..., n (1.15)
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for the ith component of the total polarization in the system. The tensor qL

is defined as relating the average polarization to a constant applied field E0,
in the linear limit:

OP̂ iPE0

|L|
= C

n

j=1
q ij

LE j
0 (1.16)

The linear response theory expresses the qL-components as

q ij
L=

b

|L|
(OP̂ iP̂ jP−OP̂ iPOP̂ jP)

=
b

|L|
F

L

dnr1 F
L

dnr2 r i
1r j

2S(r1, r2) (1.17)

where O · · ·P is an average defined for E0=0. In the canonical ensemble
where the sum rule (1.14) applies, the tensor components q ij

L are expressible
in another equivalent way

q ij
L= −

b

2 |L|
F

L

dnr1 F
L

dnr2(r i
1 − r j

2)2 S(r1, r2) (1.18)

As L Q Rn one might naively expect that only the diagonal components
q i=limL Q Rn q ii

L (i=1,..., n) survive and, according to the bulk second-
moment sum rule (1.13), that they tend to the uniform ‘‘Stillinger–Lovett’’
(SL) value

q i
SL= −

b

2
F dnr(r i)2 S(r)=

1
sn

(1.19)

which does not depend on the shape of L. This is indeed true for a bound-
ary-free domain like the surface of a sphere. As is explained below, relation
(1.19) no longer holds in a geometry with a boundary.

According to phenomenological electrostatics, based on plausible but
not rigorously justified arguments, the dielectric susceptibility q of a
macroscopic system is related to its dielectric constant E. For the considered
Coulomb plasma in a conducting state, the equality E−1=0 implies

q ij
L=

1
sn

(T−1
L ) ij (1.20)
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where TL is the size-invariant but shape-dependent depolarization tensor
with position-independent components

T ij
L= −

1
sn

F
L

dnr
“

2v(r)
“r i

“r j (1.21)

Without any loss of generality one can choose a coordinate system in
which TL is diagonal, T ij

L=T i
Ldij, and consequently qL is also diagonal,

q ij
L=q i

Ldij. Then, Eq. (1.20) takes the form

q i
L=

1
snT

i
L

(1.22)

For n-dimensional ellipsoidal domains (1) which will be of interest in this
work, the TL-components (1.21) are expressible in an alternative form as

T ij
L= −

1
sn

“
2

“r i
“r j fb(r) (1.23)

with fb(r) defined by (1.4), where r is an arbitrary point in L. With regard
to the Poisson equation (1.1), the diagonal elements of TL are constrained
by ;n

i=1 T i
L=1. In the special isotropic case of n-dimensional spheres,

T i
L=1/n and the consequent q i

L=n/sn is n times q i
SL of Eq. (1.19).

The discrepancy between the naive prediction of statistical mechanics
(1.19) and phenomenological electrostatics (1.22) was explained in a nice
series of papers (7–9) by Choquard et al. The point is that the susceptibility is
made up of a bulk contribution, which saturates quickly to the SL value
(1.19), and of a surface contribution. The surface contribution does not
vanish in the thermodynamic limit due to the inverse-power-law behavior
of the charge structure function at large distances along the boundary.
Summing up both contributions one gets instead of (1.19) the shape-
dependent result of macroscopic electrostatics (1.22). This fact was verified
on the 2D disk geometry, in the high-temperature Debye–Hückel limit and
at the exactly solvable coupling C=bq2=2 of the OCP. A progress
towards the microscopic verification of formula (1.22) was made in paper I.
There, the mapping of the 2D OCP, when C is an even positive integer,
onto a discrete 1D anticommuting-field theory (10) was used for generating a
sum rule for the charge structure function. This sum rule comes from
a specific unitary transformation of anticommuting variables keeping a
‘‘composite’’ form of the fermionic action. For L an elliptic domain, the
sum rule confirms microscopically the asymptotic formula (1.22) and gives
a finite-size correction term to q i

L explicitly in terms of boundary contribu-
tions.
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The underlying sum rule derived for the 2D OCP seemed to be closely
related to the logarithmic nature of the 2D Coulomb potential. We show in
this paper that actually the sum rule is nothing but a direct consequence of
a general principle: the total force acting on a system in thermal equilib-
rium is zero. Using this principle, the sum rule is generalized to an arbitrary
n-dimensional Coulomb plasma. As the result, for L a n-dimensional ellip-
soidal domain, the asymptotic formula (1.22) for q i

L is reproduced and its
leading finite-size correction is obtained, in both canonical and grand
canonical ensembles.

The paper is organized as follows. Section 2 is devoted to the deriva-
tion of the crucial sum rule for an arbitrary n-dimensional Coulomb
plasma. Based on this sum rule, the splitting of the susceptibility into its
macroscopic part (1.22) plus a corresponding finite-size correction term is
shown for n-dimensional domains of ellipsoidal shape in Section 3. Sec-
tion 4 presents an analysis of the finite-size correction term, dependent on
the particular ensemble. The formalism is documented in Section 5 on the
Debye–Hückel limit. The check on the exactly solvable 2D OCP at cou-
pling C=2 has already been done in the previous paper I. Concluding
remarks are given in Section 6.

2. SUM RULES

One of us has derived several sum rules for the 2D OCP in paper I,
using a mapping on a fermionic field theory. Actually, these sum rules are
much more general. In the present section, the generalization of some of
these sum rules is obtained by simple arguments about the balance of
forces or torques.

Writing that the total force acting on the particles is zero, at equilib-
rium, results into a sum rule relating their density n(r) and their charge
density r(r):

rb F
L

dnr Eb(r) r(r) −
1
b

F
“L

dS n(r)=0 (2.1)

where the first term in the l.h.s. is the force exerted by the background, and
the second term is the force exerted by the walls. dS — dS n where n is the
unit vector normal to the surface element dS and directed towards the
exterior of L. This is the generalization of Eqs. (56) of paper I. For sim-
plicity, we have assumed that the particle-wall interaction is a hard one,
such that the center of each particle feels a hard wall on “L.

A similar sum rule is obtained by assuming that a particle of species a1

is fixed at point r1, and writing that the total force acting on the other
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particles vanishes. Now, the force that the fixed particle exerts on the other
ones must also be included in the force balance, which reads

brb F
L

dnr2 Eb(r2) C
a2

qa2
n (2)

a2a1
(r2, r1) − F

“L

dS2 C
a2

n (2)
a2a1

(r2, r1)

+b F
L

dnr2 C
a2

qa1
qa2

F(r2 − r1) n (2)
a2a1

(r2, r1)=0 (2.2)

where we have used that the density of particles of species a2 at r2, knowing
that there is a particle of species a1 at r1, is n (2)

a2a1
(r2, r1)/na1

(r1). If there are
short-range interactions, they must be added to the definition (1.3) of the
Coulomb force F. Another form of Eq. (2.2) can be obtained by using the
first BGY equation which can be written as

Nna1
(r1)=brbEb(r1) qa1

na1
(r1)

+b F
L

dnr2 C
a2

qa1
qa2

F(r1 − r2) n (2)
a2a1

(r2, r1) (2.3)

With regard to the equality F(r1 − r2)=−F(r2 − r1), using Eq. (2.3) for the
last term in the l.h.s of Eq. (2.2) gives

brb F
L

dnr2 Eb(r2) 5C
a2

qa2
n (2)

a2a1
(r2, r1)+qa1

na1
(r1) d(r2 − r1)6

− F
“L

dS2 C
a2

n (2)
a2a1

(r2, r1) − Nna1
(r1)=0 (2.4)

Finally, we multiply Eq. (2.4) by qa1
and sum on a1, we mutiply Eq. (2.1)

by br(r1), and we substract from each other the two resulting equations,
with the result

brb F
L

dnr2 Eb(r2) S(r2, r1)=Nr(r1)+F
“L

dS2 C
a1, a2

qa1
Ua2a1

(r2, r1) (2.5)

This is the crucial sum rule which is the generalization of Eq. (60) of
paper I.

Alternatively, Eq. (2.1) can be derived (11) from the first BGY equation
(2.3) by summing it on a1 and integrating it on r1 (a way of proving rather
than just stating that the total force acting on the particles is zero).
Similarly, Eq. (2.4) can be derived from the second BGY equation. The
resulting sum rule (2.5) is an adaptation of the Lovett–Mou–Buff–
Wertheim equation. (12, 13)
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Although we shall not need them in the following, let us mention that
another class of sum rules can be obtained from the balance of torques.
For instance, in three dimensions, writing that the total torque acting on
the particles (due to both the background and the walls) vanishes at equi-
librium gives the sum rule

brb F
L

d3r[r × Eb(r)] r(r)+F
“L

[dS × r] n(r)=0 (2.6)

This is the generalization of Eq. (41b) of paper I. If one particle is assumed
to be fixed at some point, one obtains the torque analog of Eq. (2.5)

brb F
L

d3r2[r2 × Eb(r2)] S(r2 | r1)

=[r1 × N] r(r1) − F
“L

[dS2 × r2] C
a1, a2

qa1
Ua2a1

(r2, r1) (2.7)

This is the generalization of Eq. (45b) of paper I.
The sum rules (41a) and (45a) of paper I can also be generalized,

following a method developed in refs. 14 and 15. However, these general-
izations will not be described here.

3. DERIVATION OF THE SUSCEPTIBILITY

Let L be a n-dimensional ellipsoid in the reference frame defined by
the axes of the ellipsoid,

L: C
n

i=1

1 r i

R i
22

[ 1 (3.1)

In this reference frame both tensors qL and TL are diagonal. For the
domain shape under consideration, the depolarization tensor TL is expres-
sible as (1.23) and independent of the point r ¥ L, while fb(r) is invariant
under the transformations r i

Q − r i. This implies that

fb(r)=const −
sn

2
C

n

i=1
T i

L(r i)2 (3.2)

The corresponding Eb(r)=−Nf(r) reads

Eb(r)=sn C
n

i=1
T i

Lr ie i (3.3)
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where e i is the unit vector along the ith axis. The components of TL for a
2D ellipse read

T1
L=

R2

R1+R2 , T2
L=

R1

R1+R2 (3.4)

The components of TL are more complicated functions of R1, R2, R3 for a
3D ellipsoid. (1) In the isotropic case R i=R of a n-dimensional sphere,
T i

L=1/n.
Inserting (3.3) into the sum rule (2.5), and defining the components

dS i
2=dS2 · e i, one gets for each component the equality

brbsnT
i
L F

L

dnr2 r i
2S(r2, r1)=

“

“r i
1

r(r1)+F
“L

dS i
2 C

a1, a2

qa1
Ua2, a1

(r2, r1) (3.5)

We multiply both sides of (3.5) by r i
1, then integrate >L dnr1 and use the

definition (1.17) of the dielectric susceptibility, for obtaining

rbsnT
i
Lq i

L |L|=F
L

dnr r i “

“r i r(r)+F
L

dnr1 r i
1 F

“L

dS i
2 C

a1, a2

qa1
Ua2a1

(r2, r1)
(3.6)

Simple algebra gives

F
L

dnr r i “

“r i r(r)=F
L

dnr
“

“r i [r ir(r)] − F
L

dnr[r(r)+rb − rb]

=F
“L

dS i r ir(r) −OQ̂P+rb |L| (3.7)

where

Q̂=F
L

dnr[r̂(r)+rb] (3.8)

is the microscopic total charge (including the fixed background charge) in
the domain. Provided that rb ] 0, Eq. (3.6) can be thus rewritten in the
final form

q i
L=

1
snT

i
L

−
1

rbsnT
i
L

5OQ̂P

|L|
−

1
|L|

F
L

dnr1 r i
1 F

“L

dS i
2Or̂(r1) n̂(r2)PT6 (3.9)
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This is the desired splitting of the susceptibility onto its macroscopic part
(1.22) plus a finite-size correction term.

The formula (3.9) can be further simplified in the isotropic case of a
n-dimensional spherical domain L with a radius R i=R and a volume
|L|=snRn/n. Since now the components q i

L do not depend on i, we can
consider their common value q̄L=;n

i=1 q i
L/n. For the n-dimensional

sphere it holds

dS i
2=

r i
2

R
dS2, C

n

i=1
r i

1 dS i
2=r1 cos h dS2 (3.10)

where h is the angle between r1 and r2. Since Or̂(r1) n̂(r2)PT depends on the
orientations of r1 and r2 only through their angle h, we can choose r2 along
the 1-axis and replace >“L dS2 by snRn − 1. Equation (3.9) takes the form

q̄L=
n

sn

−
n

rbsn

5OQ̂P

|L|
−

1
R

F
L

dnr r1Or̂(r) n̂(R)PT6 (3.11)

where R=(R, 0,..., 0). It is sometimes convenient to express r1 in the
integral on the r.h.s. of (3.11) as r1=R − (R − r1) and in this way to obtain
an alternative ‘‘boundary’’ form of Eq. (3.11),

q̄L=
n

sn

−
n

rbsn

5OQ̂P

|L|
−OQ̂n̂(R)PT+

1
R

F
L

dnr(R − r1)Or̂(r) n̂(R)PT6 (3.12)

The above formalism applies to the case rb ] 0, with no restriction on
the use of canonical or grand-canonical ensembles. When rb Q 0, for the
sake of simplicity we shall restrict ourselves to the symmetric TCP in a
n-dimensional sphere and to only microscopic states such that the total
charge of the system is equal to zero, Q̂=0. This is either the case of the
canonical ensemble with imposed charge neutrality, or the case of a
restricted grand-canonical ensemble when the fixed background of charge
−Nq is first neutralized by N opposite charges +q and then ± q charges are
added to the system in a variable number of neutral pairs. (16) Under these
conditions, relation (3.12) reduces to

q̄L=
n

sn

−
n

rbsn

1
R

F
L

dnr(R − r1)Or̂(r) n̂(R)PT
rb

(3.13)

where the notation O · · ·Prb
is used to emphasize that the average is taken in

presence of the background. The background-charge density rb couples to
particle coordinates in the Boltzmann factor exp[−brb >L dnrŒ fb(rŒ) r̂(rŒ)],
where fb is given in (3.2). In the limit rb Q 0, the thermal average O · · ·Prb
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of a microscopic quantity can be expanded around rb=0, denoted simply
as O · · ·P, using the linear response theory:

O · · ·Prb
=O · · ·P− brb F

L

dnrŒ fb(rŒ)O · · · r̂(rŒ)PT+O(r2
b) (3.14)

Since, due to the +Y − charge symmetry of the TCP, Or̂(r)P=0 and
Or̂(r) n̂(R)P=0 at any point r ¥ L, relation (3.13) can be rewritten in the
rb Q 0 limit as follows

q̄L=
n

sn

−
b

2
1
R

F
L

dnr(R − r1) F
L

dnrŒ(rŒ)2

× [Or̂(r) r̂(rŒ) n̂(R)P−Or̂(r) r̂(rŒ)POn̂(R)P] (3.15)

We see that for the TCP with no background, three-body densities enter
the finite-size contribution.

4. NON-EQUIVALENCE OF ENSEMBLES

Although the macroscopic result for the n-dimensional sphere
q̄L ’ n/sn is the same in both the canonical and grand-canonical ensembles,
the finite-size correction term in (3.12) is ensemble-dependent.

4.1. Canonical Ensemble

In the canonical ensemble, the microscopic total charge is fixed,
Q̂=Q. Let us analyze term by term the finite-size corrections appearing on
the r.h.s. of Eq. (3.12).

If there is some excess charge in the domain L, due to the electrostatic
repulsion it has tendency to move to the domain boundary “L and to
create there a macroscopic surface charge density s=Q/|“L|. We note
that, as a consequence, OQ̂P/|L|=ns/R, and it is reasonable to assume
that s is finite. The other thermal averages in (3.12) are assumed to be
taken for a fixed s.

Since the microscopic total charge does not fluctuate, OQ̂n̂(R)PT=0.
One has to be cautious when identifying the R Q . limit of the dipole

moment in the last term with its flat hard-wall counterpart: owing to a slow
power-law decay of the correlations along a plain hard wall, (17–20) the limit
cannot be freely interchanged with the integration. In particular, let us
consider in n-dimensions a semi-infinite Coulomb plasma which occupies
the half-space x > 0; we denote by y the set of remaining (n − 1) coordi-
nates normal to x. The plane at x=0 is charged with the uniform surface
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charge density s. It is shown in the Appendix that in dimensions n=2, 3 the
R Q . limit of the considered sphere dipole moment is related to the cor-
responding flat dipole moment as follows:

lim
R Q .

F
L

dnr (R − r1)Or̂(r) n̂(R)PT=2 F
.

0
dx x F dyOr̂(x, y) n̂(0, 0)PT (4.1)

The factor 2 in this equation was first observed in paper I for the case of
the 2D OCP at coupling C=2. Its temperature-independence is also
checked in the Debye–Hückel limit (see the next section).

We conclude that in n=2, 3 dimensions the formula for the dielectric
susceptibility tensor of the Coulomb conductor, evaluated in the canonical
ensemble up to the leading 1/R finite-size correction term, reads

q̄L ’
n

sn

−
n

rbsn

1
R
5ns+2 F

.

0
dx x F dyOr̂(x, y) n̂(0, 0)PT6 (4.2)

This result can be readily extended to the rb Q 0 limit of the symmetric
TCP with Q̂=0 (and, consequently, s=0), discussed at the end of the
previous section. Using for the truncated correlation in (4.2) the linear
response (3.14), now in the half-space geometry with fb(rŒ)=−sn(xŒ)2/2,
one arrives at

q̄L ’
n

sn

− nb
1
R

F
.

0
dx x F dy F

.

0
dxŒ (xŒ)2 F dyŒ

[Or̂(x, y) r̂(xŒ, yŒ) n̂(0, 0)P−Or̂(x, y) r̂(xŒ, yŒ)POn̂(0, 0)P] (4.3)

Although the finite-size analysis was made for the n=2, 3 spherical geom-
etries, it can be simply generalized via Eq. (3.9) to an arbitrary
n-dimensional ellipsoid: the leading correction term is still of the order of 1
over the characteristic length of the domain.

4.2. Grand Canonical Ensemble

The grand-canonical analysis of the finite-size corrections in (3.12)
fundamentally depends on the dimension.

Two Dimensions. In the grand canonical ensemble, necessarily the
total charge Q̂ vanishes and does not fluctuate (23) (except in a very special
case not discussed here). This is because bringing a charged particle into
the system from a reservoir at infinity, with a hole left in the reservoir,
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would cost an infinite energy, and this cannot be achieved with finite fuga-
cities. Thus, the terms OQ̂P and OQ̂n̂(R)PT vanish in (3.11) and (3.12).
Furthermore, (4.1) and (4.3) are still valid.

Three Dimensions. In the grand canonical ensemble, for a finite
system, OQ̂P is determined by the fugacities and does not vanish, except for
special adjustments of these fugacities. However, OQ̂P is at most of order
R. Indeed, when the sphere already carries a charge Q, the work required
from bringing one more particle of charge q into the system from the
reservoir has an electric part qQ/R. Therefore, with finite chemical poten-
tials, qQ/R has to be finite.

The total charge does fluctuate, with a variance such that bOQ̂2PT=R
in the large-R limit, and the term OQ̂n̂(R)PT in (3.12) does not vanish, and
is of order 1/R as shown below.

Indeed, considering for simplicity the case of the OCP in a 3D sphere of
radius R, OQ̂n̂(R)PT is proportional to the total charge on the sphere when
one of the particles of charge q is fixed on the surface. Macroscopic electro-
statics says that, when a point charge q is at distance r \ R from the center
of a grounded sphere, it induces on it a surface charge qŒ=−(R/r) q. Thus,
the total charge q+qŒ vanishes if r=R. However, actually, the ‘‘surface’’
charge has some microscopic thickness l of the order of the charge correla-
tion length, and it is better to describe approximately the configuration of a
particle fixed on the surface as a particle at distance R from the center of a
sphere of radius R−l. Thus qŒ=−[(R−l)/R] q, the total charge q+qŒ is
of order ql/R, and OQ̂n̂(R)PT is expected to be of order rl/R.

Finally, in (3.11) and (3.12), in the large-R limit, the term OQ̂P/|L| is
at most of order 1/R2 an can be discarded. But the term OQ̂n̂(R)PT gives to
(3.12) a contribution of order 1/R, like the dipole integral, and both should
be kept in the leading finite-size correction. As to (4.1) and (4.3), they are
still valid.

5. DEBYE–HÜCKEL THEORY

The formulas (3.11) and (4.1) will now be tested in the weak-coupling
limit, which is described by the Debye–Hückel theory, for the general
system of M species of point particles plus a background, in two or three
dimensions.

5.1. General Formalism

A consistent way of deriving the Debye–Hückel theory for a finite
system is to start with the renormalized Mayer diagrammatic expansion
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(which is reviewed, for instance, in refs. 21 and 22), in the grand canonical
ensemble, and to make a topological reduction, replacing the fugacities by
the densities. The weak-coupling limit for the correlation functions is
obtained by resumming the chain diagrams with the densities taken as
constants na (taking into account their position-dependence near the
boundary “L would give corrections of higher order). This is equivalent to
writing the Ornstein–Zernicke equations with the direct correlation func-
tions replaced by −b times the corresponding interaction potential:

ha1a2
(r1, r2)=−bqa1

qa2
v(|r1 − r2 |)

+C
a3

F
L

dnr3[−bqa1
qa3

v(|r1 − r3 |)] na3
ha3a2

(r3, r2) (5.1)

where the correlation functions h are related to the Ursell functions by
Ua1a2

(r1, r2)=na1
na2

ha1a2
(r1, r2). The set (5.1) of M2 coupled equations can

be transformed into one equation. Indeed, let us make the ansatz that the
solution is of the form

ha1a2
(r1, r2)=−bqa1

qa2
G(r1, r2) (5.2)

Using (5.2) in (5.1) one does check that these Ornstein–Zernicke equations
are satisfied provided that G obeys the integral equation

G(r1, r2)=v(|r1 − r2 |) −
o2

sn

F
L

dnr3 v(|r1 − r3 |) G(r3, r2) (5.3)

where o2=snb ; a naq2
a; the Debye length is 1/o. Using (5.2) one finds

Or̂(r1) n̂(r2)PT= −
ro2

sn

G(r1, r2)+rd(r1 − r2) (5.4)

and

S(r1, r2) — Or̂(r1) r̂(r2)PT= −
1
b
1o2

sn

22

G(r1, r2)+
o2

bsn

d(r1 − r2) (5.5)

The integral equation (5.3) for G can be transformed into a differential
equation by taking the Laplacian with respect to r1. One obtains the usual
Debye–Hückel equation for the screened Coulomb potential G

[D1 − o2] G(r1, r2)=−snd(r1 − r2) (5.6)
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However, in a finite system, the differential equation (5.6) must be
supplemented by boundary conditions. In the present approach, these
boundary conditions are provided by the integral equation (5.3).

It has been seen in Section 3 that, in general, when there is a back-
ground, the finite-size correction to the susceptibility can be expressed in
terms of the two-body correlation appearing in (3.11), while, in the limit of
no background, one obtains the more complicated expression (3.15) in
terms of a three-body correlation. The Debye–Hückel theory has the very
special feature that this complication does not arise. Indeed, since r=−rb,
one sees in (5.4) that Or̂(r1) n̂(r2)PT/rb is expressed in terms of the two-
body function G even in the limit rb Q 0. Furthermore OQ̂P=0. Therefore
(3.11) still involves only a two-body correlation in this limit rb Q 0.

5.2. 2D Disk

In an infinite plane, (5.6) gives G(r1, r2)=K0(o |r1 − r2 |), where K0 is a
modified Bessel function. In a finite disk of radius R, the solution is of the
form (9)

G(r1, r2)= C
.

a=0
[Ia(s < ) Ka(s > )+aaIa(s1) Ia(s2)] ma cos ah (5.7)

where s1, 2=or1, 2, s < and s > are the smallest and the largest, respectively,
of s1 and s2, Ia and Ka are modified Bessel functions, and aa a coefficient to
be determined; ma is the Neumann factor m0=1, ma=2 for a \ 1. In the
square bracket of (5.7) the first term corresponds to an expansion of
K0(o |r1 − r2 |), while the second term corresponds to the general symmetric
solution of (5.6) without the r.h.s. d term.

The determination of a0 from the integral equation (5.3) has been dis-
cussed in ref. 23, where it has been argued that the length scale r0 in the 2D
Coulomb potential v must be made infinite at the end of the calculation.
The result is a0=K1(Z)/I1(Z), where Z=oR.

For determining aa when a \ 1, we consider the integral equation (5.3),
and use for G the expansion (5.7) and for v the expansion

v(|r1 − r2 |)=−ln
|r1 − r2 |

r0
=−ln

r >

r0
+ C

.

a=1

1
a

1 r <

r >

2a

cos a(h2 − h1) (5.8)

In the angular integral on h3, only the terms involving the same a in the
two expansions (5.7) and (5.8) survive. In terms of the square bracket in
(5.7), i.e.,

Ga(r1, r2) — Ia(s < ) Ka(s > )+aaIa(s1) Ia(s2) (5.9)
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one obtains, when r1 > r2,

2Ga(r1, r2)=
1
a

1 r2

r1

2a

− o2 F
r1

0
dr3 r3

1
a

1 r3

r1

2a

Ga(r3, r2)

− o2 F
R

r1

dr3 r3
1
a

1 r1

r3

2a

Ga(r3, r2), a \ 1 (5.10)

One could solve (5.10). However, it is simpler to remark that it implies
“Ga(r1, r2)/“r1 |r1=R=−(a/R) Ga(R, r2). Therefore, using the definition
(5.9) for Ga(R, r2) gives

K −

a(Z)+aaI
−

a(Z)= −
a

Z
[Ka(Z)+aaIa(Z)], a \ 1 (5.11)

a relation that Choquard et al. (9) have obtained by another method,
involving a continuation of (5.6) outside the disk; that method led to some
ambiguity for determining a0. From (5.11), using simple relations obeyed
by the Bessel functions, one obtains

aa=
Ka − 1(Z)
Ia − 1(Z)

(5.12)

This final equation turns out to be valid for all a, including a=0.
Using (5.7) and (5.12) in (5.2), one can easily check the perfect screen-

ing expected in two dimensions, even in the grand canonical ensemble: the
charge in the cloud around a particle of charge qa2

is −qa2
,

F
L

d2r1 C
a1

qa1
na1

ha1a2
(r1, r2)=−qa2

(5.13)

We now turn to the dielectric susceptibility. From its definition (1.17),
using the present S(r1, r2), one obtains (9)

q̄L=
1
p
51 −

2I1(oR)
oRI0(oR)

6 (5.14)

Alternatively, one can use the general method of the present paper and
check the expression (3.11). Here OQ̂P=0 and rb=−r. Let −Ddisk be the
dipole moment defined as the integral in (3.11) (we call this dipole moment
−D rather than D for using the same notation as in Appendix A). Only the
part a=1 of G contributes to this integral. Using Or̂(r) n̂(R)PT from
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(5.4) and G1 from (5.9) with a1 from (5.11) gives, after simple manipula-
tions on the Bessel functions,

Ddisk= −
2rI1(oR)

I0(oR)
(5.15)

It should be remarked that, since in 2D OQ̂n̂(R)PT=0, Ddisk is also the
integral in (3.12). Using (5.15) in (3.11) or (3.12), one retrieves the same q̄L

as in (5.14). In the large-R limit, in (5.14) I1(oR)/I0(oR) Q 1 and one sees
that the correction term is indeed of order 1/R:

q̄L ’
1
p

−
2

poR
(5.16)

The dipole moment Dflat for a flat wall, in the 2D Debye–Hückel
theory, has been computed in ref. 19. It can be checked that, in the limit
R Q ., Ddisk does have twice the value found for Dflat.

5.3. 3D Sphere

In infinite space, (5.6) gives G(r1, r2)=exp(−o |r1 − r2 |)/|r1 − r2 |. In a
finite sphere of radius R, the same considerations as in 2D now give (9)

G(r1, r2)= C
.

a=0

2a+1

`r1r2

5Ia+1
2
(s < ) Ka+1

2
(s > )+baIa+1

2
(s1) Ia+1

2
(s2)6 Pa(cos h)

(5.17)

where Pa is a Legendre polynomial. As in 2D, the coefficients ba can be
determined by using the integral equation (5.3), with the same result as in
ref. 9:

ba=
Ka − 1

2
(Z)

Ia − 1
2
(Z)

(5.18)

With our method, there is no special problem or ambiguity with the case
a=0.

As expected, there is no perfect screening, since the starting point was
the grand canonical ensemble. Using (5.17) and (5.18) in (5.2) gives

F
L

d3r1 C
a1

qa1
na1

ha1a2
(r1, r2)=−qa2

51 −
sinh or2

or2cosh oR
6 (5.19)

rather than − qa2
.
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The dielectric susceptibility, computed from its definition (1.17) is
found to be (9)

q̄L=
3

4p
51 −

3I 3
2
(oR)

oRI 1
2
(oR)

6 ’
R Q .

3
4p

51 −
3

oR
6 (5.20)

Alternatively, one can use the general method of the present paper. Again
OQ̂P=0, rb=−r, and only the part a=1 of G contributes to the integral
in (3.11). One retrieves for the susceptibility the result (5.20).

It should be noted that, in 3D, Q̂ fluctuates and OQ̂n̂(R)PT ] 0. One
finds

OQ̂n̂(R)PT=r
I 1

2
(oR)

oRI−1
2
(oR)

’
R Q .

r

oR
(5.21)

in agreement with the qualitative estimate of Section 4.2. Therefore, with
Dsph defined as the integral in (3.12), the equivalence of (3.11) and (3.12)
gives

Dsph ’
R Q .

−
2r

o
(5.22)

and the finite-size correction to q̄L can be decomposed as

q̄L ’
R Q .

3
4p

51 −
1

oR
−

2
oR

6 (5.23)

where the term 1/oR is the contribution from OQ̂n̂(R)PT and the term
2/oR is the contribution from the dipole moment Dsph seen fom the
boundary. Again, in the limit R Q ., Dsph does have twice the value found
for a flat wall (19) in the Debye–Hückel theory.

6. CONCLUSION

Macroscopic electrostatics predicts a shape-dependent value for the
dielectric susceptibility of a conductor (the response, sometimes called
polarizability, to a uniform applied electric field). In the present paper, it
has been shown that classical (i.e., non-quantum) equilibrium statistical
mechanics of a large class of microscopic models results into a dielectric
susceptibility which is the sum of the macroscopic value plus an explicit
finite-size correction. Thus, the limits of validity of macroscopic electro-
statics are clearly exhibited.
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The basis for the microscopic derivation only is that the total force
acting on a system vanishes at equilibrium. It is quite surprising that such a
simple statement is sufficient, and the reason for that still is an open
problem.

Our approach deals with models of Coulomb systems made of charged
particles embedded in a uniformly charged background. The case of no
background is dealt with as a limiting case. It seems that our method
cannot be used for directly starting with a system without a background.

Classical statistical mechanics has been used. It gives an acceptable
phenomenological description of some systems such as electrolytes or
molten salts. We have not attempted to deal with a more fundamental
description of real matter based on quantum statistical mechanics of point
charges.

APPENDIX: DIPOLE MOMENTS

We briefly summarize known facts about the large-distance behavior
of particle correlations along a plain, possibly homogeneously charged,
hard-wall in n=2, 3 dimensions. Let us first review the case of a semi-infi-
nite Coulomb plasma which occupies the half-space x > 0; y denotes the set
of (n − 1) coordinates normal to the x-axis. According to ref. 19, for the
charge-density correlator one expects an asymptotic power-law behavior
along the boundary of type

Or̂(x, y) n̂(xŒ, 0)PT ’
gn(x, xŒ)

|y|n
, |y| Q . (A.1)

where gn(x, xŒ), which as a function of x and xŒ has a fast decay away from
the wall, obeys the relation

sn

2
F

.

0
dx gn(x, xŒ)=F

.

0
dx x F dyOr̂(x, y) n̂(xŒ, 0)PT, n=2, 3 (A.2)

valid for any xŒ \ 0. A behavior of type (A.1) at large distances was
observed also in the large-R limit of the n-dimensional sphere. (8, 20) For two
points r and rŒ inside the sphere, it is only necessary to identify x and xŒ

with the corresponding point distances from the sphere surface and |y| with
the Euclidean distance (chord) of the point projections onto the sphere
surface:

x=R − r, xŒ=R − rŒ; |y|=2R sin(h/2) (A.3)
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where h is the angle between r and rŒ. At small distances, an infinitesimal
deformation of a flat boundary towards the sphere has a negligible effect
on the correlations. We can therefore write, on both microscopic and
macroscopic scales, that, as the radius of the sphere R Q .,

Or̂(r) n̂(rŒ)PT|sphere ’ Or̂(x, y) n̂(xŒ, 0)PT|flat (A.4)

In the dipole integral on the r.h.s. of (3.12), the correlator of interest is
taken at the point rŒ=R fixed at the boundary, which corresponds to
xŒ=0 in (A.3). To simplify the notation, we define

ksph(x, h)=Or̂(r) n̂(R)PT|sphere, kflat(x, |y|)=Or̂(x, y) n̂(0, 0)PT|flat

(A.5)

Within the identification (A.3) with xŒ=0, the asymptotic R Q . equiva-
lence (A.4) now takes the form

ksph(x, h) ’ kflat(x, |y|); |y|=2R sin(h/2) (A.6)

Our task is to relate the R Q . limit of the sphere dipole moment Dsph seen
from the boundary and the flat dipole moment Dflat, defined as follows

Dsph=F
L

dnr(R − r1) ksph(R − r, h) (A.7)

Dflat=F
.

0
dx x F dy kflat(x, |y|) (A.8)

Because of slight differences, the derivations of the relation are made sepa-
rately for 2D (with notation ‘‘disk’’ instead of ‘‘sph’’) and 3D.

2D Disk

Using the substitution x=R−r and writing r1=(R−x)[1−2 sin2(h/2)],
the disk dipole moment (A.7) is expressible as

Ddisk=F
R

0
dx x(R − x) F

p

−p

dh kdisk(x, h)

+2 F
R

0
dx (R − x)2 F

p

−p

dh sin2(h/2) kdisk(x, h) (A.9)

In the large-R limit, we make use of the transformation (A.6) to get
Ddisk=I1+I2, where
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I1=F
R

0
dx x 11 −

x
R
2 F

2R

−2R

dy

=1 −
y2

4R2

kflat(x, y) (A.10)

I2=2 F
R

0
dx R 11 −

x
R
22

F
2R

−2R

dy

=1 −
y2

4R2

y2

4R2 kflat(x, y) (A.11)

Since kflat(x, y) as a function of x has a fast decay away from the wall, the
x/R terms in I1 and I2 can be neglected in comparison with the unity when
R Q .. After simple algebra, one finds for I1

lim
R Q .

I1=Dflat+F
.

0
dx x lim

R Q .

2R F
1

−1
dt 1 1

`1 − t2
− 12 kflat(x, 2tR)

(A.12)

Considering kflat(x, 2tR) ’ g2(x, 0)/(2tR)2 implies a converging integral
over t, so that limR Q . I1=Dflat. As concerns the second integral I2, it can
be analogously written as

lim
R Q .

I2=F
.

0
dx lim

R Q .

(2R)2 F
1

−1

dt

`1 − t2
t2kflat(x, 2tR) (A.13)

As above, we consider the leading asymptotic behavior of kflat(x, 2tR), with
the result

lim
R Q .

I2=F
.

0
dx g2(x, 0) F

1

−1

dt

`1 − t2
=Dflat (A.14)

Here, relation (A.2) with s2=2p was applied at xŒ=0. We conclude that

lim
R Q .

Ddisk=2Dflat, n=2 (A.15)

3D Sphere

In 3D, the volume element d3r=r2 dr dW, where the angular part
dW=sin h dh dj with h ¥ (0, p) and j ¥ (0, 2p). Using the substitution
x=R − r, the sphere dipole moment (A.7) reads

Dsph=F
R

0
dx x(R − x)2 F dW ksph(x, h)

+2 F
R

0
dx(R − x)3 F dW sin2(h/2) ksph(x, h) (A.16)
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In the large-R limit, the transformation (A.6) implies Dsph=I1+I2, where

I1=F
R

0
dx x 11 −

x
R
22

(2p) F
2R

0
dy ykflat(x, y) (A.17)

I2=2 F
R

0
dx R 11 −

x
R
23

(2p) F
2R

0
dy y

y2

4R2 kflat(x, y) (A.18)

Here, we have used > dW=(2p/R2) >2R
0 dy y. As in 2D, the x/R terms are

neglected as R Q .. Thus, limR Q . I1=Dflat and

lim
R Q .

I2=2p F
.

0
dx lim

R Q .

(2R)3 F
1

0
dt t3kflat(x, 2tR) (A.19)

The leading asymptotic behavior kflat(x, 2tR) ’ g3(x, 0)/(2tR)3 as R Q .

gives

lim
R Q .

I2=2p F
.

0
dx g3(x, 0)=Dflat (A.20)

where the relation (A.2) with s3=4p was applied at xŒ=0. Finally,

lim
R Q .

Dsph=2Dflat, n=3 (A.21)
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